Insulin Resistance Promotes Early Atherosclerosis via Increased Proinflammatory Proteins and Oxidative Stress in Fructose-Fed ApoE-KO Mice

نویسندگان

  • Beatriz Cannizzo
  • Agustín Luján
  • Natalia Estrella
  • Carina Lembo
  • Montserrat Cruzado
  • Claudia Castro
چکیده

High fructose intake induces an insulin resistance state associated with metabolic syndrome (MS). The effect of vascular inflammation in this model is not completely addressed. The aim of this study was to evaluate vascular remodeling, inflammatory and oxidative stress markers, and atheroma development in high-fructose diet-induced insulin resistance of ApoE-deficient mice (ApoE-KO). Mice were fed with either a normal chow or a 10% w/v fructose (HF) in drinking water over a period of 8 weeks. Thereafter, plasma metabolic parameters, vascular remodeling, atheroma lesion size, inflammatory markers, and NAD(P)H oxidase activity in the arteries were determined. HF diet induced a marked increase in plasma glucose, insulin, and triglycerides in ApoE-KO mice, provoked vascular remodeling, enhanced expression of vascular cell-adhesion molecule-1 (VCAM-1) and matrix metalloprotease 9 (MMP-9) and enlarged atherosclerotic lesion in aortic and carotid arteries. NAD(P)H oxidase activity was enhanced by fructose intake, and this effect was attenuated by tempol, a superoxide dismutase mimetic, and losartan, an Angiotensin II receptor antagonist. Our study results show that high-fructose-induced insulin resistance promotes a proinflammatory and prooxidant state which accelerates atherosclerotic plaque formation in ApoE-KO mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of S-Methyl-L-Cysteine on Oxidative Stress, Inflammation and Insulin Resistance in Male Wistar Rats Fed with High Fructose Diet

Background: S-methyl cysteine (SMC) is a hydrophilic cysteine-containing compound naturally found in garlic and onion. The purpose of the present study was to investigate the protective effect of SMC on oxidative stress, inflammation and insulin resistance in an experiment of metabolic syndrome.Methods: Male Wistar rats were divided into five groups (6 rats in each group), namely; control, cont...

متن کامل

Adiponectin resistance and proinflammatory changes in the visceral adipose tissue induced by fructose consumption via ketohexokinase-dependent pathway.

An epidemic of obesity and type 2 diabetes is linked with the increase in consumption of fructose-containing sugars, such as sucrose and high-fructose corn syrup. In mammalian cells, fructose is metabolized predominantly via phosphorylation to fructose-1 phosphate by ketohexokinase (KHK) or by alternative pathways. Here we demonstrate that a KHK-dependent pathway mediates insulin resistance and...

متن کامل

NAMPT knockdown attenuates atherosclerosis and promotes reverse cholesterol transport in ApoE KO mice with high-fat-induced insulin resistance

NAMPT has been suggested association with atherosclerosis and insulin resistance. However, the impact of NAMPT on atherosclerosis remained unknown. Therefore, the objective of this study was to use a NAMPT loss-of-function approach to investigate the effect of NAMPT on atherosclerosis in hypercholesterolemic mice. We demonstrated that a specific NAMPT knockdown increased plasma HDL-C levels, re...

متن کامل

Disruption of Nrf2, a Key Inducer of Antioxidant Defenses, Attenuates ApoE-Mediated Atherosclerosis in Mice

BACKGROUND Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2(-/-)) causes incre...

متن کامل

Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice.

BACKGROUND A causal relation between hyperhomocysteinemia (HHcy) and accelerated atherosclerosis has been established in apolipoprotein E-deficient (apoE-/-) mice. Although several cellular stress mechanisms have been proposed to explain the atherogenic effects of HHcy, including oxidative stress, endoplasmic reticulum (ER) stress, and inflammation, their association with atherogenesis has not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012